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The currant bun model of simple molecules 
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The model  of  a molecule previously introduced by the authors, in which most 
of the electronic charge is represented by point charges on the nuclei, in the 
lone pairs and bonds, and the remainder is in a diffuse function which 
represents the outer electrons, is here extended. Molecules with several heavy 
atoms require several diffuse functions, one for each heavy atom, in addition 
to one at the centre of  nuclear charge. In an electric field the centre of each 
diffuse function moves against a harmonic restoring force and this gives rise 
to the polarizability of  the molecule. When two molecules interact the move- 
ment of  this function produces the dispersion force. The model thus embodies 
all the long range forces between molecules in a more accurate and simpler 
way than was possible earlier. 
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1. Introduction 

Lord Kelvin, m a n y  years ago, produced an electrostatic model of  the atom 
consisting of a sphere of  uniform positive charge in which localized negative 
charges were placed so as to reach equilibrium. The model was further elaborated 
[1] to show shell structure by J. J. Thomson following his discovery of the electron. 
The effect is like the distribution of currants through the texture of a currant 
bun. This model  was decisively rejected when Rutherford proved that the positive 
charge was not so distributed but strongly localized at the centre. Nevertheless 
their conviction that electrical forces play a decisive role in atomic structure was 
important  for the development  of  later theories. 
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Recent papers from this laboratory [2, 3] have established methods of approximat- 
ing to the electron density of a molecule using a linear combination of spherical 
Gaussians at optimized positions within the molecule. By fitting a good calculated 
density with a large enough set of Gaussian densities, the accuracy of properties 
calculated from the fitted density can be made high. Some properties, such as 
the spherical moments of the charge, remain invariant if the model is further 
simplified by shrinking the Gaussians into delta functions [4]. The resulting 
point charge models have significance in the calculation of the electrostatic forces 
between molecules. The shrinking process is justified for more general properties 
when the exponents are large so that the Gaussian is already well-localized. It 
is found, however, that many models contain diffuse functions with small 
exponents and, for these, shrinking is much less appropriate. In a previous paper 
of the present authors [5] it was shown that by retaining one diffuse function for 
each heavy atom along with the point charges, the representation of the MEP 
(molecular electrostatic potential) can be made very accurate both outside the 
molecule and partially inside. 

In this paper this model of a molecule consisting of point charges for the nuclei 
and for most of the electrons but with some electronic charge remaining in a 
diffuse cloud will be considered further. Since its representation of the MEP has 
already been discussed it will not be reconsidered. In Sects. 3, 4 the molecular 
polarizability will be treated and in 5 the dispersion energy between two molecules. 
The conclusion is suggested that this model can represent very compactly those 
parts of the molecule which determine the long-range intermolecular forces. 

Although the origin and use of this model differs considerably from that of Kelvin 
and Thomson yet it gives a picture of the molecule which is largely determined 
by electrostatics and so has much in common with theirs once the obvious change 
of sign of the charge cloud is made. There is also a significant connection between 
this model and the shell models of defects used by Faux and Lidiard [6]. 

2. The diffuse functions 

The approximating of p, the electron density of a molecule, by using a linear 
combination of spherical Gaussian densities has been described fully elsewhere 
[2]. The approximate form 

p * : ~  q,G,(r-r ,)  (1) 
t 

where Gt is defined as 

G, = ( a,l ~) 312 exp ( -at (r  - r,) 2) (2) 

has been shown to give a good representation of p for a modest number of terms 
provided that the origins r, are well-chosen and the exponents a, and charges q, 
are optimized. 

The density G, is the same as that of the ground state eigenfunction of a spherical 
oscillator with the exponent a, related to the mass m, and frequency to, by 

at = m,w,. (3) 
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For such an oscillator the potential energy has the form 

V = 1/2 rnto2r 2 (4) 

and the force constant is k = into 2. 

It was noticed in practice [7, 5] that, when the exponents were optimized, the 
fitting of Gaussians to the electron density normally produced a few functions 
for each molecule with rather small exponents. These were located close to the 
centre of nuclear charge in small molecules. The arbitrary criterion of  an exponent 
less than 1 was taken as the definition of these diffuse functions. This implies a 
spread of  the charge over several nuclei. In practice the exponents are usually 
significantly different from 1 so that this number in the definition is not critical. 
The number of diffuse functions increases as the total number of Gaussians 
increases and the description of each atom improves. It seems significant that at 
least one for each heavy atom is required to obtain a good density. 

In general the most diffuse function is put near the charge centre and has a charge 
of several electrons. It especially represents the electron density in the outer part 
of the molecule since the small exponent allows it to extend further than the 
other, more localized, functions. Since this is the region where penetration effects 
are first felt its inclusion as a continuous distribution explains why the representa- 
tion of the MEP is improved so much. The next most diffuse functions tend to 
be on or near the heavy atoms. They represent the outer charge associated with 
that atom and give shape to the diffuse cloud. Together, these functions include 
a major part of the valence electrons. 

Typical figures for the exponent and charge of the most diffuse function are given 
in Table 1 for various molecules. It is located at or near the centre of nuclear 
charge. For the molecules with two heavy atoms the exponent decreases by 
approximately a factor of four, showing that the function extends to twice the 
distance. The table also includes the less-diffuse functions for the larger molecules, 

Table 1. Diffuse functions for molecules 

Molecule Exponent Charge 

H20 0.4616 3.1376 
HF 0.4951 1.9907 
NH 3 0.3326 2.5183 
CzH 4 0.1116 1.2402 

(on C 0.6344 4.0184) 
HCHO 0.1451 0.8820 

(on C 0.7314 3.4442) 
(on O 0.7174 4.2319) 

CH3F 0.1529 1.1463 
(on C 0.6569 3.8828) 

CH3OH 0.1689 1.4762 
(on C 0.6755 3.7135) 
(O lone pair 0.8243 1.8132) 
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Table 2. Polarizability of molecules 

Molecule H20 HF NH3 

axx 2.62900 1.79536 8.86588 
ayy 6.73356 1.79536 8.86588 
otz~ 4.84376 4.12828 5.16318 
expt 6 9.72 5.6 14.98 

which are located on the heavy nuclei or in the O lone pair and give the diffuse 
cloud its shape. These are in parentheses. 

3. Polarizability of  molecules 

To calculate the polarizability of  a molecule the easiest procedure is to add 
electric field terms to the Hamiltonian and solve the equations again. This finite 
field approach [7] investigates very directly the distortion of the electron density 
due to the field. About 20 small values of  the field were taken in turn and the 
wavefunction calculation repeated. By numerical differentiation of the dipole 
moment  with respect to the field the polarizability is obtained. 

This procedure was applied to three molecules and the results are given in Table 
2. In these calculations the z axis is the molecular axis and the yz  plane contains 
a H atom. The field is taken in two or three principal directions as necessary to 
find all the tensor components  of  the polarizability. It can be seen that the results 
are fairly satisfactory considering that the basis set was not enlarged to permit 
the distortion of  each basis function caused by the field to be fully described. 
The experimental  polarizabilities [9, 10, 11] are spherical averages and so are 
about twice the values calculated here. 

4. In an electric field 

From the electron density in the presence of  the field the density-fitting process 
can be repeated so that the changes in density induced by the field can be 
described more simply. 

In the presence of  an electric field E the potential of  a spherical oscillator with 
charge q changes to 

V = 1/2rmo2r 2 -  q ( r .  E )  

= 1 / 2 m t o Z ( r -  q /rmoZE)  2 -  q2/2mw2E2.  (5) 

This implies that the system oscillates with the same frequency about  an origin 
which has moved in the direction of the field by an amount  proport ional  to the 
field: 

displacement/field = q~ into 2. (6) 
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Thus the force q E  produced by the external field is balanced by the harmonic 
restoring force with this displacement. The polarizability of  the oscillator is then 
given by 

axx = - d 2 ( e n e r g y ) / d E 2  

= q2/m~o 2 (7) 

and is isotropic. When the oscillator is constrained to move along a line which 
is not in the direction of  the field this formula has to be amended. Only the 
resolved part  of  the force in the direction of the line will be effective in moving 
the function. Thus when a spherically symmetric harmonic oscillator is put into 
an electric field its wavefunction retains the same shape, including its exponent,  
but changes its origin. 

This theory of  the spherical oscillator will now be used as an analogy for the 
Gaussian model  of a molecule. Consequently, when fitting the density in the 
presence of a field, Gaussians with the same charges and exponents as before 
but re-optimized origins are used. Each Gaussian was allowed to move only in 
a restricted direction. The lone pair Gaussians, for example, remained in the lone 
pair direction but could move along it. The inner shell Gaussians are so strongly 
attracted to the nucleus that they did not move. 

From the spherical oscillator, the Gaussian exponent  is identified as 

at-= rntwt (8) 

where mt is an effective mass connected with the charge in the Gaussian. From 
the calculation of the displacements of  the Gaussian G, in the presence of a finite 

2 electric field the force constant, k, = m , w t ,  was found. In practice the displace- 
ments were closely linear in the field despite the fact that the original basis set 
is fixed. The mass and the frequency can be deduced from these. Since this 
movement  of  the Gaussian is easier in some directions than others the effective 
mass will depend on the field direction, i.e. it will be a tensor. The polarizability 
depends on this mass and on the exponents so it will become a tensor also. It 
is clear from this that the polarizability is largely determined by those Gaussians 
which move most in a field. The Gaussians on the nuclei move little or no distance 
so they contribute little or nothing to the polarizability but those on the lone 
pairs and in the centre of  the molecule are sensitive to the field and contribute 
most of  the effect. 

For many molecules the principal directions of  the mass tensor are determined 
by symmetry so that the principal components  of  the polarizability can be found 
directly. In such a direction the polarizability is 

2 
axx = q~/  mtco t 

2 2 
= q t mr~ a , .  (9) 

According to this model the diffuse functions will contribute most significantly 
to the polarizability since they have the smallest exponents. It happens also that 
they have the smallest effective masses but the result remains that the polarizability 
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Table 3. Diffuse function contribution to polarizability 

H20 HF NH s 

Force constant xx 3.20606 1.75829 0.97036 
yy 2.10225 1.75829 0.97039 
z z  2.58086 0.74385 1.20423 

Effective mass x x  0.06647 0.13940 0.11403 
y y  0.01014 0.13740 0.11403 
z z  0.08257 0.32951 0.09188 

Polarizability x x  3.07056 2.25392 6.53575 
y y  4.68281 2.25392 6.53575 
z z  3.81439 5.32772 5.26664 

is almost all due to the diffuse functions. Since these functions represent the 
outer, less firmly bound electrons this is a natural conclusion. The extent of this 
is shown in Table 3 which gives the force constant and effective mass for the 
diffuse function as determined by fitting and, hence, the contribution of this 
function to the polarizability. By comparing with Table 2 it can be seen that the 
major component of the polarizability has been found. 

5. Dispersion forces 

In view of this success in calculating the polarizability from the diffuse function 
it is natural to ask whether the dispersion forces also can be calculated. The 
Drude model which invokes the coupling of harmonic oscillators in the two 
molecules is the simplest starting point. Calculations of this type have been 
performed by Amos and Yoffe [12] and by Waldman and Gordon [13]. In the 
simplest form of this model the dipole-dipole dispersion term C6 is determined 
by the mean polarizabilities al ,  ~2 of the molecules and the frequencies oJ1, oJ2: 

C6 = 3 / 4 ( a l m 1 ) ( ~ 2 m 2 ) / ( m l  + ~o2). (10) 

Higher order dispersion coefficients can also be calculated from this model but 
this has not been investigated. 

Some results for C6, the isotropic van der Waals term, are shown in Table 4. 
They are compared with accurate results (quoted from [14]) calculated using 
good values of the dipole-dipole oscillator strengths. The agreement obtained is 

Table 4. The isotropic C6 coefficient of the dis- 
persion forces between identical molecules calcu- 
lated using only the diffuse function 

This Accurate 

H20 61.67 45.37 
HF 19.68 - -  
NH3 87.41 89.08 
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surprisingly good in view of  the simplicity of the model and suggests that C6 is 
even more sensitive to the outermost electrons than is the polarizability. A similar 
experience of  a low value of  the polarizability leading to a good value of C6 
using a model of this type was reported by Mulder et al. [14] and they have 
analyzed the reasons for it. 

6. Discussion 

By retaining one diffuse function for each heavy atom but shrinking into point 
charges the remaining Gaussians, a model of a molecule is obtained which has 
great similarities with the old currant bun model. For a molecule such as water 
or ammonia with one heavy atom it has one diffuse function and, hence, a 
spherical external shape. Inside this function there are point charges, both positive 
and negative, which, together with it, give a Molecular Electrostatic Potential 
very close to the true one. When acted on by an external field the charge cloud 
polarizes by moving its. origin against the harmonic restoring force due to the 
rest of the system. When attracted by another molecule this polarizable cloud 
contributes most of the van der Waals force. The angle-dependent part of the 
intermolecular forces is predominantly the electrostatic force and this is deter- 
mined by the point charges placed carefully around the molecule. The dispersion 
and repulsive forces are conveniently centred where the diffuse function is, close 
to the charge centre of the molecule. When there are several heavy atoms there 
will be a diffuse function for each of these together with a very diffuse function 
at the charge centre. This rebaked currant bun model is a very significant 
improvement on pure point charge models or atomic multipole models. It is more 
difficult to use than these in such applications as molecular dynamics calculations, 
because the electric field on each molecule must be calculated iteratively in order 
to determine how far it will cause the diffuse function to move and so represent 
the polarized molecule, but the resulting increased accuracy would make its 
introduction worth the effort in some circumstances. 

The shell model of an ion, as used by Faux and Lidiard [6] in their calculations 
of defects in ionic crystals, divides the ionic charge into two parts, outer and 
inner, coupled harmonically. Such a model incorporates the polarization ettects 
and the induced dipoles caused by an external field through the movement of 
the outer shell against the inner core. The present treatment, if applied to ions, 
would allow a determination of  the charge in each region, the force constant and 
the effective mass by fitting the density from ab initio calculation. It would also 
permit the inner electronic charge to be shrunk to a point charge on the nucleus. 
This would make the shell model an ab initio model instead of a semi-empirical 
one. 
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